User:HaydenBobMutthew/Analog circuit

From Minecraft Wiki
Jump to: navigation, search

An analog circuit is a redstone circuit which operates on signal strength.

Introduction[edit]

An analog encoding in Minecraft (a.k.a. hexadecimal wire or simply hex wire) is a transmission which outputs the same signal strength it receives as input. Because power levels can vary from 0 to 15, an analog transmission can convey 16 states in a single wire.

Analog vs. Digital in Real-Life
"Analog" means "continuously variable". This doesn't match Minecraft analog wires which have 16 discrete values (for example, a signal strength of 6.89 can't be in Minecraft). But a term was needed to differentiate between signal strength transmissions and on/off transmissions, and the real-life distinction between digital electronics (which generally only transmit a high voltage or low voltage) and analog electronics (which operate on continuously varying voltage levels) was a close fit, so the two terms were adapted for use by the Minecraft community.

Analog source[edit]

An analog source provides a specific analog signal strength to a circuit.

Container Analog Source
N
Container Analog Source
1×2×2 (4 block volume)
1-wide, flat, silent
circuit delay: 1 tick
A container and a redstone comparator can produce an analog signal strength dependent on how full the container is. This source is useful for unchanging analog sources within a circuit.
Variations: A solid opaque block can be placed between the container and the comparator. If the block is powered to signal strength 15, the comparator will output 15 instead of measuring the container, providing a fast way to switch signal strengths between two values.
The chest can be replaced with any other container, as well as other blocks which can produce a signal from a comparator. Cakes and cauldrons can be useful as they provide visual feedback of the signal strength they'll produce from a comparator. Droppers can be good choices because their block entity isn't ticked (like furnaces) and they aren't rendered as entities (like chests or trapped chests).
Lever-Dust Analog Source
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Lever-Dust Analog Source
2×15×2 (60 block volume)
flat, instant, silent
circuit delay: none
Turning on one lever will produce the corresponding signal strength at the output. This analog source is useful for quickly changing the signal strength to test circuits.
Variations: The levers can be moved to attach to the blocks supporting the redstone dust. The levers can be replaced with buttons for a temporary signal, or any other power component.
Item Frame Analog Source
Item Frame Analog Source — An item should be placed in the item frame.
1×3×2 (6 block volume)
1-wide, flat, silent
circuit delay: 1 tick
An item frame containing an item can be used to provide a specific signal strength or a player-adjustable signal strength between 1 and 8.
Frame-Lever Analog Source
1
7
Frame-Lever Analog Source — An item should be placed in the item frame.
4×4×3 (48 block volume)
flat, silent
circuit delay: 2 ticks (changing between 0-7 and 8-15) or 3 ticks (changing value by 1)
Outputs a player-adjustable signal strength from 0 to 15. The item frame chooses a value from 0 to 7 and the lever chooses whether to add 8 to the output.
Variations: As long as the block under the lever is powered to strength 15, it can be powered by any method, allowing the lever to be moved to a more convenient location. The torch can be replaced by a full container if inconvenient.
Earliest Known Publication: March 26, 2015[1]

Analog transmission[edit]

An analog transmission circuit is a transmission which outputs the same signal strength it receives as input. Because power levels can vary from 0 to 15, an analog transmission can convey 16 states in a single wire.

Analog Comparator Wire
Analog Comparator Wire
flat, silent
circuit delay: 1 tick per 4 blocks
The simplest analog wire is a line of redstone comparators. However, like repeaters, comparators can draw a signal from an opaque block and push a signal into an opaque block, thus it is usually more efficient in resources and in signal delay to place comparators every four blocks. Hence, it is the best option for short distances and tricky turns.
The signal strength of an analog comparator wire (ACW) can be reduced or suppressed at some point along its length by feeding another signal into one of the comparators in subtraction mode. The signal can be overridden by feeding a stronger signal into one of the opaque blocks.
Because the redstone dust is not adjacent to any power or transmission components, only opaque blocks, it will not configure itself to point in any particular direction. This will cause the dust to also power any opaque blocks or mechanism components to the side of the analog wire. Transmission components should not be placed adjacent to the wire's dust because that would cause the dust to configure itself in a way where it doesn't power the rest of the analog wire.
Earliest Known Publication: January 9, 2013[2]

Analog Repeater Wire
A
B
Analog Repeater Wire — One segment of analog repeater wire. The signal strength output at B will be the same as the signal strength input at A.
flat, silent
circuit delay: 1 tick per 14 blocks
Signal strength can also be retained by using repeaters to repeat every possible signal strength at the correct distance from the output to convey the correct signal strength. It is the fastest option for long distances.
A single segment of analog repeater wire (ARW) consists of exactly 15 repeaters connecting an input line to an output line. To connect multiple segments together without additional comparators, the segments must be arranged so that the output dust of the last repeater is the same as the input dust of the next segment (i.e., block B of the previous segment is block A of the next segment). This causes the segments to overlap in distance by one block and causes each segment to be offset to the side from the previous segment by two blocks.
Variations: To keep the segments in-line, or to turn against the direction the repeaters are facing, raise the final repeater by one block and drop the next segment underneath it.
Another option is to use a comparator and an opaque block between the segments, and alternate the direction the repeaters are facing. This keeps the height to 2 blocks but increases the circuit delay to 2 ticks per 17 block.
Earliest Known Publication: November 21, 2012[3]
Analog Subtraction Wire
A
15
B
15
Analog Subtraction WireShown: 10-state ASW (aka "decimal wire"). For a 10-state wire, the input signal strength must be between 6 and 15 (so should never actually be off). Chests are completely full with any items. The signal strength output at B will be the same as the signal strength input at A.
flat, silent
circuit delay: 1 tick per (18-N) blocks (see below for N)
If fewer than 15 states need to be transmitted (for example, output from a item frame, composter or cauldron), it may be more efficient to encode those N states in the higher levels of signal strength, and then repeatedly subtract the transmitted value from 15 after (17-N) dust, an even number of times. However, it is complicated and infrequently useful.
Variations: The chests can be replaced with any other full container. The chests can also be replaced with regular power components (redstone torches, powered levers, etc.) if the redstone dust next to them is raised or lowered by one block, or if the subtraction comparator and its power source are moved so that the redstone dust runs straight into the comparator's side with the comparator perpendicular to the line still facing into the same block.
Earliest Known Publication: January 26, 2013[4]

Vertical analog transmission[edit]

The vertical options for analog transmission are similar to the horizontal options.

Vertical ACW
Vertical ACW
Vertical Downwards ACW
silent
circuit delay: 1 tick per 1 vertical block (up), 1 tick per 2 vertical blocks (down)
A redstone comparator can power a block with dust on it, and that dust can power another comparator at its level, etc. Vertical ACW travels two blocks sideways for every 1 block moved upwards (or three blocks with an additional block between the dust and the comparator), but can also be bent at each block into a 3×3 "circular staircase".
The downwards variant can go two blocks down for two block sideways. It can be curved into the 3×3 staircase as well.

Vertical ARW
Vertical ARW
silent
circuit delay: 1 tick per 14 vertical blocks
Vertical ARW is an analog repeater wire built on redstone ladders. It only transmits signals upwards and only in segments of 14 vertical blocks (use vertical ACW to close any gaps). Like horizontal ARW, the last dust of the previous segment must be the first dust of the next segment unless a short run of vertical ACW is used to connect the two segments.
Horizontal ARW built on a 3-wide staircase can be used to transmit analog redstone signal diagonally downwards.

Vertical ASW basically just consists of redstone staircases or ladders with occasional breaks for subtraction.

Analog operation[edit]

An analog operation circuit is a circuit which operates on signal strength, such as arithmetic and comparison.

Analog Subtractor[edit]

B
A
Analog Subtractor

Analog Inverter[edit]

O
I
Analog Inverter

An analog inverter is a circuit that inverts the signal strength, for example a signal with the strength of 6 will be changed to 9, and a full strength signal will be 0. This can be achieved by placing a redstone block at the back of a redstone comparator and the input signal will be at the side of the comparator, and the output signal will be at front of the comparator, or by making a analog repeater wire, but instead of the wire in front of the repeater, place a block with a redstone torch attached to the front. place a wire in front of every torch, and the bottom-left redstone dust is the output. Note that the analog inverter works as a 4-bit bitwise NOT operation.

Analog Maximum[edit]

Analog maximum #1
Analog maximum #2

This circuit outputs the largest value of all inputs. It is based on the fact that when two or three inputs transmit into a solid block, the block contains the largest value of the inputs. Note that it can be used as an OR gate.

Analog Minimum[edit]

Analog minimum

This circuit outputs the smallest value of all inputs. It is based on the analog maximum circuit and the fact that min(x,y)=a-max(a-x,a-y), where a=15 in this case. Note that it can be used as an AND gate.

Analog Min-max[edit]

A
X
B
Analog Min-max

The output signal of analog min-max only turns on when X are greater than or equal to A, and less than or equal to B.

Analog Equality Detector[edit]

The output of analog equality detector only turns on when A is equal to B.

Design 1
A
1
B

Analog Equality Detector #1

Note: This detector cannot detect whether the signal strength is equal to 0 or not.
4×4×6 (144 block volume)
flat, silent
circuit delay: 2 ticks
Design 2
8×6×4 (152 block volume)
silent
circuit delay: 5 ticks
Analog Equality Detector #2 (bottom layers)
Analog Equality Detector #2 (middle layers)
Analog Equality Detector #2 (top layers)

1-Detector[edit]

A 1-detector only outputs a signal when the input has a signal strength of 1. This is useful for detecting when an input signal strength has just barely turned on, or – when preceeded by a redstone dust run-out or comparator in subtraction mode – for detecting any specific signal strength.

Subtraction 1-Detector
Subtraction 1-Detector
2×3×2 (12 block volume)
flat, silent
circuit delay: 2 ticks
Earliest Known Publication: April 23, 2014[5]

SiberianHat's 1-Detector
SiberianHat's 1-Detector
1×4×3 (12 block volume)
1-wide, silent
circuit delay: 2 ticks (1 to 2+ or 2+ to 1 transition) or 3 ticks (0 to 1 or 1 to 0 transition)
Earliest Known Publication: October 14, 2014[6]

Abjunction 1-Detector
Abjunction 1-Detector
1×5×4 (20 block volume)
1-wide, silent
circuit delay: 3 ticks.
Although not tileable, when stacked side-by-side, this circuit can be used to create an analog-to-one-active decoder.
Variations: Two variations are not stackable, but have a shorter circuit delay:

Abjunction 1-Detector #2

1×5×4 (20 block volume)
1-wide, silent
circuit delay: 2 ticks

Abjunction 1-Detector #3

2×4×3 (24 block volume)
silent
circuit delay: 2 ticks

Moved-Block 1-Detector
Moved-Block 1-Detector
1×3×4 (12 block volume)
1-wide
circuit delay: instant (1 to 2+ transition), 1 tick (0 to 1 or 1 to 0 transition), or 1.5 ticks (2+ to 1 transition).
Although not tileable, when stacked side-by-side, this circuit can be used to create an analog-to-one-active decoder.

Analog clock[edit]

An analog clock is a circuit which repeats a pattern of analog signal strengths.

Regular Analog Clock
Regular Analog Clock
3×N×2, flat, silent
clock period: 16 ticks per comparator
This clock produces a regular change in signal strength: each analog output value, from 15 to 0, last for the same duration (1 tick per comparator).
A useful variation is to move the torch back one spot (removing one repeater, and increasing another to 2 ticks to compensate) so that the first comparator only gets powered to power level 14. This produces a clock period of 15 ticks per comparator, which is more useful for producing periods measured in seconds (for example, 30 seconds would be 20 comparators).

Analog memory[edit]

An analog memory is a memory circuit that is capable of holding signal strength.

RS Latch

A RS latch or capacitor is the analog version of RS latch.

RS Latch #1
Q
R
S
RS latch #1
4×5×2 (40 block volume)
flat, silent
circuit delay: 2 ticks
RS Latch #2
Q
R
S
Analog RS latch #2
4×5×2 (40 block volume)
flat, silent
circuit delay: 2 ticks
This latch will maintain the highest signal level that arrived from input S if R is off, and fade (reduce memorized signal strength) by strength of R every two redstone ticks. For maximum strength (15) signals it behaves like any other RS latch, but it can also memorize intermediate signal levels, and since 2-tick pulses on R will subtract their strength from its memorized state, it makes a nice element of counter or countdown circuits.
Properinglish19's Capacitor (RS Latch)
R
Q
S
Properinglish19's capacitor (RS latch)
4×5×2 (40 block volume)
flat, silent
circuit delay: 2 ticks
Earliest Known Publication: January 4, 2013 (basic concept)[7] and January 6, 2013 (subtraction refinement)[8]
Analog Up/Down Counter
dn
up

Analog Up/Down Counter

Each dropper is full of stackable items.
2×7×2 (28 blocks)
flat, silent
circuit delay: 4 ticks (up) or 6 ticks (down)
The counter can be reset to 0 or 15 by powering either redstone dust for 4 ticks.
If the inputs don't need to be at the same height as the output, the outer blocks can be removed and the droppers activated by powering the blocks underneath them. If the input pulse is less than 4 ticks, the droppers can be powered directly.
Earliest Known Publication: October 5, 2013[9]

Analog encoder[edit]

An analog encoder converts other encodings to analog encoding type.

Binary-to-analog encoder[edit]

An binary-to-analog encoder (a.k.a. B2A encoder) converts from binary encoding to analog encoding.

Comparator B2A Encoder
7
11
13
14
8
4
2
1
Comparator B2A Encoder
14×6×2 (168 block volume)
flat, silent
circuit delay: 4 ticks

Analog decoder[edit]

An analog decoder converts an analog encoding to another encoding type.

Analog-to-binary decoder[edit]

An analog-to-binary decoder (a.k.a. A2B decoder) converts an analog encoding into a binary encoding.

Fast A2B Decoder
Fast A2B Decoder
12×15×4 (720 block volume)
circuit delay: 2 ticks
This circuit first decodes the analog input into a nearly-one-cold output (see below), and then encodes that to a binary output.
Binary encoding has the property that going from an even value to the next odd value changes only one binary line: the 1-bit. The first section takes advantage of this fact to use the even one-cold output lines to encode the binary output lines for the next odd value as well as their own binary lines. This allows the odd output lines to control only the 1-bit line. The first section also removes the lower repeaters that would suppress the one-cold output lines for values 8, 12, and 14, because the binary output lines they control don't change for greater values (for example, once the input has reached 8, the 8-bit line should be on for all greater values), simplifying the one-cold to binary encoding for higher values.
b1
b2
b4
b8

Fast A2B Decoder (bottom layers)

The dust keeping the torches off are powered from above. Repeaters may be needed to extend the outputs any further.

Fast A2B Decoder (top layers)

The signal strength of the redstone dust on the lime wool block determines the binary output.
Earliest Known Publication: January 30, 2014[10]
Compact A2B Decoder
7
Compact A2B Decoder
4×14×2 (112 block volume), flat, silent
circuit delay: 10 ticks
This decoder is slow and its outputs aren't lined up nicely (though it doesn't take too much more space to line them up), but its compactness allows it to be built in bases or other places where space is tight.
The outputs change state one after the other while the computations work their way through the circuit, so it may make sense to suppress the outputs until the calculation has completed.

Analog-to-unary decoder[edit]

An analog-to-unary decoder (a.k.a. A2U decoder) converts an analog encoding (signal strength) into a unary encoding (N lines on).

Single-spaced A2U Decoder
1
2
3
4
Single-spaced A2U Decoder
1×N×2
Double-spaced A2U Decoder
1
2
3
4
Double-spaced A2U Decoder
Earliest Known Publication: March 21, 2013[11]

Analog-to-one-active decoder[edit]

An analog-to-one-active decoder (a.k.a. A2O decoder) converts an analog encoding into either a one-hot encoding (Nth line on) or one-cold encoding (Nth line off).

All of the decoders below are shown decoding to one-cold encoding, but can easily be changed to one-hot encoding. While one-hot encoding is useful for activating adjacent redstone mechanisms (lamps, dispensers, pistons, etc.), one-cold encoding can often be useful if there are subsequent logic circuits.

ACW Opposed-Power A2O Decoder
15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ACW Opposed-Power A2O Decoder — Raised blocks in the middle row keep the dust between the comparators from connecting with the dust on the output blocks. Note the dot of redstone dust under the block on the far left.
3×16×3 (144 block volume)
silent
circuit delay: 3 ticks
Powers a line of 16 redstone dust with a power level equal to the input analog power level from one side, and (15 - input) from the other, leaving only a single dust unpowered.
The decoder transmits the input's power level to both sides simultaneously by taking the input in the middle of the circuit and using the same number of comparators getting to either side (using analog comparator wire), including subtracting it from 15 on one side.
Variations: To change the output from one-cold to one-hot, add torches to the output blocks (adding 1 tick to the circuit delay).
The output can be shortened to display fewer values by reducing the number of items in the subtraction comparator's input container (when shortening the comparator lines, make sure each dust has a comparator before or after it so it doesn't power an adjacent output block, as is purposefully done with the 0 output block).
Earliest Known Publication: March 17, 2013[12]

ARW Opposed-Power A2O Decoder
15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ARW Opposed-Power A2O Decoder
6×16×2 (192 block volume)
flat, silent
circuit delay: 2 ticks
The ARW decoder transmits the input's power level to both sides simultaneously by using a single segment of analog repeater wire.
Variations: To change the output from one-cold to one-hot, add torches to the blocks the output dust is on (adding 1 tick to the circuit delay).
Earliest Known Publication: June 7, 2013[13]

Abjunction A2O Decoder
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Abjunction A2O Decoder (overhead view)
Abjunction A2O Decoder (sideview)
4×16×4 (256 block volume)
silent
circuit delay: 2 ticks
Splits the input signal into two lines of redstone dust, with one line at one less power than the other, and compares the power level of the two lines at each potential input to see where the input's power level drops to 0.
The abjunction ("A AND NOT B") is the final block at each output which combines the negation of its own value's power with the power of the next value (so will only be cold if its own value is powered but the next is not).
Variations: To change the output from one-cold to one-hot, add torches to the output blocks (adding 1 tick to the circuit delay).

Opposed-Power Item Frame Decoder
15
1
2
3
4
5
6
7
8
Opposed-Power Item Frame Decoder — An item should be placed in the item frame.
3×12×2 (72 block volume), not including item frame input
flat, silent
circuit delay: 2 ticks
Powers a line of 8 redstone dust with a power level equal to (input - 1) from one side, and (8 - input) from the other, leaving only a single dust unpowered for a one-cold output.
Because the bottom comparator is in comparison mode, it will never be affected by the dust at its side.
Variations: To change the output from one-cold to one-hot, add torches to blocks the output dust is on (adding 1 tick to the circuit delay).
Earliest Known Publication: January 14, 2014[14]

References[edit]

  1. "Apocryphan" (March 26, 2015): Compact 2 tick Analog user input and output Selector – Imgur
  2. seiterarch (January 9, 2013): ""Minecraft Beyond Binary 01: All the Comparisons (13w01b)"" – via YouTube
  3. "Cubehamster" (November 21, 2012) "Minecraft: Redcoder (Decoding Redstone Dust)" – via YouTube
  4. "Yoshi29pi" (January 26, 2013): Maintaining Signal Strength – Minecraft Forums
  5. "AWEDYSSY" (April 23, 2014): "Equal Signal Strength Comparators" – via YouTube
  6. "Silent Item Frame Combination Lok". Imgur.
  7. hfog (January 4, 2013). "There IS A Redstone Capacitor in 13w01b! (HFoG eats crow)" – via YouTube
  8. Properinglish19 (January 6, 2013) "Redstone Capacitor - Full Range and Solid State" – via YouTube
  9. DicoTheRedstoner (October 5, 2013) "Even Smaller Signal Strength Counter! (2x2x5)" – via YouTube
  10. "munin295" (January 30, 2014) Analog Signal Strength To Binary Encoder – Minecraft Forums
  11. Grizdale (March 21, 2013) Grizdale's Unary Adder – Minecraft Forum
  12. Grizdale (March 17, 2013) Grizdale's Analogue to Digital signal converter – Minecraft Forum
  13. munin295 (June 7, 2013): Analogue to Digital signal converter – Minecraft Forum
  14. "awedyssy" (January 14, 2014) – Simple 8-Way Item Frame Selector Switch – Minecraft Forums